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Abstract. A relation betweenquantumR-matricesand certain factorization pro-
blem in Hopf algebras is established.A definition of dressingtransformation in
thequantumcaseis alsogiven.

The term “Quantum groups” has beenrecently proposedby V. Drinfeld [3]

to cover a specific class of Hopf algebrasthat are intrinsically connectedwith
the QuantumInverseScatteringMethod [1, 2]. As a matter of fact, the invention

of Q.l.S.M. has provided a vast sourceof new examplesfor the theoryof Hopf
algebras.In this respectwe should first of all mentionof definition of quantized
envelopingalgebrasof simple Lie algebrasgiven by Drinfeld [4] and Jimbo [5]

following the work of Kulish and Reshetikhin[6 ] thatdealswith the sl(2) case.
An alternativeapproachwhich keepsmuch closerto the original ideasof Q.I.S.M.

hasbeendevelopedby Faddeev,ReshetikhinandTakhtajanin [7].
The theoryof Quantumgroupshasas its semi-classicalcounterpartthe theory

of PoissonLie group,that is Lie groups equippedwith Poissonbracketsuchthat

group multiplication is a Poisson mapping. The theory of Poisson Lie groups

is also relatively new [8] and was motivated both by its relation to Quantum
groups and by applicationsto an important classof classicalintegrablesystems
on1-dimensionallatticesdescribedby difference I..ax equations[9].
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The commutation relations in quantum groups are expressedby meansof

the so-called quantum R-matrices which are of fundamentalimportancefor

the theory. Their semi-classicalcounterpartsare called classicalr-matricesand

serve to determinethe Poissonbracket relations on Poisson Lie groupreferred
to above. There existsalso a profound connectionbetweenclassicalr-matrices
and certain factorization problemsin Lie group. In typical applicationsthese

latter arereducesto matrix Riemann-Hilbertproblemsthat are so crucial to the

study of solutions of Lax equations[9]. Thus classicalr-matricesfulfil thedouble
task of providing both natural Poisson bracketsfor non-linearLax equations

and also analytical tools that may be used to obtain their solutions.They also

enter the definition of the so-called dressingtransformationsthat play an mi-
portant role in the theory [9].

The aim of thepresentpaperis to establisha similar relation betweenquantum

R-rnatricesand certain factorization problemsin Hopf algebras. We also give

a definition of dressingtransformationsin the quantumcase.Connectionswith

quantum integrable systemsare presently under study and will be described

in a separatepublication.

The present paperwas written in part when the secondauthorwas working

as a Visiting Fellow at Imperial College in London. He wishes to expresshis

deep gratitude to the Department of Mathematics at Imperial College for its

hospitality. Particular thanks are due to Miss J. Brown who helped to prepare

the preliminary draft of the manuscript.The authorsalso would like to thank

L. Faddeev,L. Takhtajanand A. Kirillov for numerousinteresting discussions.

1. FACTORIZABLE LIE BIALGEBRAS

The present section exposesknown facts on classical r-matrices in a way

that is suitedfor generalizationsto thequantumcase.

Let ~ be a Lie algebra, g~its dual. A Lie algebrastructure [ . ]* on g *

definesa map

(1.1) p:g -+ gAg :(p(X),fAg)=(X,[f,gI~).

Lie bracketson g and g * are said to be compatibleif p is a I -cocycle on

i.e.

Xp(Y)—Yp(X)--p([X, Y1)=O,

the actionof ~jon g A ~ beinggiven by

(1.2) X YAZ=adA(X)~YAZ= [l®X+X® l,Y®Z—Z®Y}.

A pair (9. g*) with compatible Lie bracketsis called a Lie bialgebra [8].
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We shall be dealing with au apparentlyvery specialclassof Lie bialgebras.(How-

ever. as we shall see, any Lie bialgebrais embeddedcanonically into a Lie bial-

gebrathat falls into this class).

Fix an element r E g 9 . We associatewith it a trivial 2-cocycleon ~ with

valuesin 11 ®

(1.3) ~,.(X) — [r, A(X)] = [r, X ® I + I oX]

which gives rise to a would-be commutator map [ , ]~~ * ® g* .. g* defined

by (1). Let us associatewith r a linear operator

(1.4) r: q*_*g:f~~(fnidr)

Its adjoint is given by

(1.5) r*:f~_*(id®f, r) = (f®id, P(r))

whereP is the perniutationoperatorin 9 ® g , P(X ® Y) = Y ® X. The bracket
• ],~,is givenby

(1.6) [f,g]~=ad~~r(f).g±ad*r*(g).f

In order to define a Lie algebra structureon g * the bracket (6) must be
skew and satisfy theJacobiidentity. Put

(1.7) I=r+P(r)

The skew symmetryof (6) is equivalentto the condition that

(1.8) [1,AX]= [r-l-P(r). AX] = 0

for all X ~
Put

(1.9) B,~= [r
12, r13] -+- [r13,r23] + [r13,r23].

Here as usual r12 is the image of r E ~ ® g under the mapping g —*

—* ® ® q whichsendsa® b into a® b nI and similarly forr13, r,3.

PROPOSITION 1.1. If r satisfies (1 .8) and moreoverB,. = 0, expression(1 .6)
is a Lie bracket on g * that makes(g. g *) a Lie bialgebra.

Equation

(1.10) [r1~, r73 + [r13, r73 J + [r12, r13 I = 0

is called theclassicalYang-Baxteridentity.

An obviousway to satisfy (8) is to choosea skewr, i.e. suchthat
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(1.11) r+P(r)=0.

Condition (11) is usually called the classicalunitarity condition. However,

we shallbe interestedin the oppositecase.

DEFINITION 1 .1. The Lie bialgebra describedin Proposition 1.] is called factori-
zable zf the linear map1: g * —* g defined by the kernel (7) is a linear isomor-

phism. U

Due to condition (8) this map is clarly g -equivariant.Hencethe inversemap

~ definesa nondegenerateinvariant inner producton g

(1.12) (X, Y)=(r’(X),Y).

We may identify g and 9* by means of the pairing (12) and speakof two

different Lie algebra structureson the same linear space.(This point of view
has advantagesin the study of integrablesystemsand is adopted in [9, 10]).

To understandthe meaning of the Yang-Baxter identity (10) let ds rewrite
it in operatorform. A short calculationyields that (10) is equivalentto

(1.13) [rX,rY]_r([X,rY]_[r*X,Y])=0

which meanssimply that r g * —~ g is a Lie algebrahomomorphism.Observe
now thaf r = — P(r) defines the same Lie bracketon 9*, satisfies(10) and

hence gives another Lie algebra homomorphismr_ : g * -÷ g . We shall some-

timeswrite r+ insteadof r. Let us considerthe mappings

r~*r_ (X,Y)~-.X- y
(1.14) 9* 9ED 9 9.

Sincer+ — r = I thecompositionmapcoincideswith I. Hencewe get

PROPOSiTION 1.2. Let (g, g*) be a factorizable Lie bialgebra. Then any ele-

mentX E g admitsa uniquedecomposition

(1.15) X=X~ ~

with (X÷,X_) Elm (r~0 r_) C g e g . We refer thereaderto [10] for aprecise

descriptionof this imagein termsof the Cayley transformof r.

Note. It is sometimesmoreconvenientto deal with skewr-matrices.If we put

r0=r~ —1/21=r+l/21

then

r0 =_r0*.
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However,r
0 now satisfies

(1.16) [r0f, r0g] —r~([r~f~g] + [f, r0g]) = — — [If, Ig].

Equation(16) is calledthe modifiedYang-Baxterequation[9, 101.
Let U(g), U(9 *) by the universalenvelopingalgebrasof g , ~ “, respectively.

We endow them with .the usual Hopf algebra structure.The comultiplication

A is given by

(1.17) AX=X®l+l®X

and the antipodeis

(1.18) S(X)=—X

on thegeneratorsof degreeI.

Let us considerthe following chainof mappings

(1.19) U(~*)&U(g*) ® U(g~)
T~®~U(g) ~ U(s) m(id®s~..)U(g)

wherem: U( q) ® U( g) -* U(
9) is themultiplication map.

PROPOSITION 1 .3. The compositionmap U( ~*) -# U(9) is a linear isomorphism
inducedby 1: g * -~ q. Any elementx C U(g) admits a uniquerepresentation

(1.20) x=~x’5(x’J

where

(1.21) ~x~0x1=(r~0r)A(I1(x))

lies in therangeof (r~®r_)A. U

The next formula relatesmultiplications in U( 9*) and U( g) and may be
regardedas a generalizationof (6). Put

(1.22) x *y

The product * is the product in U(g*) pushedforward to U(g) by means
of I.

PROPOSITION1.4.
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(1.23) x *y = ~ yS~x
1).

Let us explain now the relation of the representations(20), (1 5) to the facto-

rization problemsin Lie groups. Let G, G* be the local Lie groupscorresponding
to g • g “, respectively.We mayregardthem asconsistingof productsof exponen-

tials g = eX which lie in anappropriatecompletionof U( g) (U( ~~‘)) and satisfy

Ag = g ® g, Sg = f1. Hence (20) implies that there is a unique decomposition
for an elenientg C G

(1.24) g =g~g~1

with t~, g) C Iin(r~ x r) C G x G. Formula (23) yields the following rela-

tion betweenthe multiplications in G, G*. Putg o Ii = I (J’ (g) . I~ (Ii)) where1

is the local homeomorphismbetweenG* andG inducedby (7). Then

(1.25) go Im =g~hg*

So far our discussionremainedformal, since we did not give any examples

of factorizable Lie biaJgebras.An ample sourceof such examplesis provided

by the following construction[8].

THEOREM . Let (g, g *) be an arbitrary Lie bialgebra.

(i) There exists a unique Lie algebrastructureon = 9 0 * such that g
* C b are Lie subalgebrasand the natural pairing on b

(1.26) ((X, f). (Y, g)) =g(X) +f(Y)

is an b -invariant.

(ii) Let ~ P* be the canonical projection operators onto g , g * in the de-

composition b = 9 0 9 ~. Wemay regard ~D ~D* as elements of ~ ® b (in fact,

P is the image of the canonical element in 9 ® g * under the natual embedding

9 0 9 * C ~ b ). Put (rb)~ = P, (rIu) = — P~. The r-matrices (r~)~ satisfy

(1 0), moreover,

(rb)~ —(rb) =1

is the identity operator. Hencetheyequip (~, ~*) with the structure of a facto-

rizable Lie bialgebra. Note that

909*

as a Lie algebra.
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We shall refer to ( b, b *) as the double of.(g, g*). The theoremabovewas

first statedin [8], however,with no specialemphasison the factorizationpro-

perties. The notion of the double of a Lie bialgebrawas then systematically
usedin [9].

It is interestingto notice that if (9, ~ “) is alreadya factorizableLie bialgebra
its doublemay be describedmoreexplicitly.

PROPOSITION 1.5. Let (9, 9 ~)be a factorizable Lie bialgebra. Then ~i = 9 09

as a Lie algebra. •

Indeed,observethat thereare naturalembeddings

~

Equip with theinner product

((X1,X2),(Y1, Y2)>=(X1, Y1)—(X2,Y2)

where ( , > is the naturalinner producton . Then b is the linear sum of these

embeddedsubalgebras,b = g + g * and the canonicalprojectionsonto ~
9 * in this decompositionare adjoints of each other. Note that although of

course b * — * as a Lie algebra,in standardcoordinateson ~ ~ 9 the

dual bracket looks twisted. We may briefly, though somewhatinformally, say

that the double of a factorizableLie bialgebracoincideswith its twisted square

(cf. Theorem2.9 below).
Conversely,let b be a Lie algebra equippedwith a nondegenerateinvariant

inner product and a , h its Lie subalgebras.Assumethat a , Ii are isotropic
and the restriction of the inner product to a x b is nondegenerate,so that
a , Li are the duals of each other. Then (a, km ) is a Lie bialgebraand ~I is its

double.The set (g, a , b) is referredto as the Manin triple.

Example. Let g be a complex simple Lie algebra,h C 9 its Cartansubalgebra,
Li + C g a Borel subalgebra,containing h , Li — C g the oppositeBorel subal-
gebra,1ll~= [ b~,Li ± I. Let ir Li -+ b~/ n~ Ii be the naturalprojection.

Let ( , ) be the Killing form on 9 . It inducesa natural inner product on km
Put b = 0 h. We equip b with the inner product

(1.28) ((X, H), (Y, H’)> = (X, Y) — (H, H’).

Let U be an orthogonaloperatorin km
Wedefineembeddingsr~U Li ± —~ b by

(1.29) r
0~:X~~-~‘(X~,ir(X~)),



540 N. YU. RESHETIKHIN,M.A. SEMENOV.TtAN-SHANSKy

(1.29) r~;X~÷~X,U(ir(X))).

PROPOSITION 1 .6. Assumethat (id — 0) is invertible. Then theoperatorsr~define

thestructureofa Lie bialgebra on (km+ km _) and~i = 9 0 km is its double. U

COROLLARY The projection g 0 1 —~ 9 induces the structureof factorizable

Lie bialgebraon (g, g *) Its dual is isomorphic to

= {(X~.,X)E b~Oh; 0(7r(X~))=7r(X)} •

The associated factorization problem in g is

(1.30) X = .— X with X~C b~,0(ir(X~))= ir(X).

The most common choice of 0 is, of course, 0 = — id. However, for rank

g > 1 there exists a continuousfamily of r-matrices on g . (There is also an

additional freedom associatedwith parabolic subalgebrasin g , see[10, 11]).

2. Let us now turn to the study of the quantumcase.Recall that “Quantum
groups” are Hopf algebraswhich may be regardedas deformationsof universal

enveloping algebras.We start with the definition of factorizable Hopf algebras

which is suggestedby Proposition1.3. Our next step will be to prove that such
algebrasactually exist, which is again achievedby squaring an arbitrary Hopf

algebra.
LetA bea Hopf algebrawith productin A ® A -÷A, coproductA A -+ A ® A,

unit e. counite and antipodeS. We shall denoteby A’ the oppositecoproduct
obtainedfrom A by permutation

(2.1) A’(x)=P(A(x)), P(a®b)=b®a.

Let A * be the dual Hopf algebra. Recall that by definition the structureof
a Hopfalgebraon A * is definedby the formulae

(A*f, xoy>=(f,xy>,

(2.2) (fg, x> = (fog, Ax),

(Sf,x> = (f, Sx).

We denoteby A° the oppositeHopf algebra of A * in which the coproduct

is givenby

(2.3) (A°f, xoy>=(f,yx)

TheantipodeinA° is definedby
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<S’f, x> = (f, S~(x)>.

The algebraA is said tc be quasitriangular[3] if thereis an invertibleelement

R C A ®A satisfying

(A®id)R=R R
(2.4) 13 23

(id®A)R =R
13 R12

andsuchthat

(2.5) A’(a) = R A (a)R
1

for allaCA.

PROPOSiTION 2.1. Assume that R satisfies (2.4) and moreover (e 0 id) R =

= (id e e)R = e. ThenR is invertibleand

(2.6) R’ =(S®id)R=(id®S1)R

Formula (2.6) is connected with the so-called crossing symmetry of quantum

R-matricesand in a slightly disguisedform was extensivelyused in the quantum

inversescatteringmethod.We have

R(Sto id) R = (m
12 to id) (id toS to id) R13 R23 =

=(m12toid)(idtoStoid)(Atoid)R=(e®id)R=e.

The second identity is proved in a similar way, using the second formula

in (2.4).

PROPOSITION 2.2. Let (A, R) be aquasitriangularHopf algebra. Then R satisfies

the Yang-Baxter identity

(2.7) R13 RB R1, =R12 R23 R13

Proof Formulae(2.4) imply that

(2.8) (A’o id)R =R23 R13, (idoA’)R =R12R13.

Since (A’~id)=R12 (Atoid)RT~,(idoA’)=R23 (idtoA)R~theconsistency
condition(2.7) musthold. .

Any elementB CA ®A definesa linear map

(2.9) B:A*~+A:fi~~.(foid,B>

PROPOSITION 2.3. An elementR E A o A satisfying (2.4), or, equivalently,
(2.8) definesa Hopf algebrahomomorphismR A°-~ A.
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It is sometimes useful to expressthe intertwining relations (2.5) in an alter-
native way making the connectionwith the quantuminversescatteringmethod
more transparent.Recall that hystorically the definition of quasitriangularHopf

algebra was an algebraic refinement of the R-matrix commutation relations
betweenthe matrix coefficientsof the quantumnionodromymatrix. To clarify

the connectionwith QISM let us introducethe canonicalelementT C A o A ~.

T= ~ e
10e

1

where e. } is a basis in A and {e’ is the dual basisin A ~. Clearly the definition

of T doesnot dependon the choiceof the basis.

PROPOSITION 2.3’. The canonical element T satisfies the following relations

(2.10) (A®id)T=~ejoekoeiek=TlT
2,

(A’ eid)T = ~ toe/c to eke1 = T2 T1,

(2.11) R12T1T2=T2T1R12,(S®id)T-T=1.

It is in this form that the intertwining relation (2.5) is commonlyused in

Quantuminversescatteringmethod.
Assume that R C A ®A satisfies (2.4) and (2.7). Put R =P(R~) =

= P(S0 id) R whereP is the permutation map.

PROPOSITION 2.4. R_ satisfiesrelations (2.4) and (2.7). Moreover,R’ = P(R).
U

As in Section 1 we shall sometimeswriteR+ insteadofR.
Considernow thefollowing sequenceof mappings

R ®R tn(id®S

1)

(2.12) A°—A°®A° ~-AoA ~A.

Clearly, the compositionI: A°-~Ais given by

(2.13) f—~(foid,I>, I =R P(R) = R~R1.

We may now finally introducethe definition of factorizable Hopf algebras.
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DEFINITION 2.1. A Hopf algebra A is called factorizable if it is quasitriangular
and, moreover, the linear map(2.13) associatedwith thecorrespondingR-matri.x

is invertable.

Observe that,forafactorizableA, the mappingA~~~±_~—A0toA° R + toR...~AtoA

defines an embedding of A°into A to A. Below we shall describe a twisted Hopf
algebra structure on A to A which makes this embedding a Hopf algebra homomor-

phism. U

Remark.SonietimesR-matricessatisfying the unitarity condition

(2.14) RP(R)=e

are considered(the correspondingHopf algebrasare called triangular).By con-

trastwith Definition 2.1 this meansthat the operator(2.13)isa rank 1 projection
operator.

PROPOSiTION 2.5. Let (A, R) be a factorizable Hopf algebra. Thenany element

x C A admitsa uniquerepresentation

(2.15) x = ~ x’~S
1~x)

with ~ ox’ lying in therangeof themapping(R~toR_)A°:A° -*AOA. •

The following assertionis a closeanalogueof Proposition1.4.

PROPOSITION2.6. Put

(2.16) x *y =I(I~~x) 11(y)), x,yCA.

Then

(2.17) x*y= ~x~yS’ (x’). •

Thus the formal propertiesof factorizable Hopf algebrasare the sameas in

the quasiclassicalcaseconsideredin Section 1. The main differenceis of course

that genericallyA contains only very few group-like elements,and hence the
sum in (2.15) cannot beeliminated(cf. (1.23),(1.24)).

Let us now turn to the constructionof the double of a Hopf algebra.We
start with thenotion of twistedproductof Hopf algebras.

Let A, B be arbitraryHopf algebras.Assumethat thereis an elementR C B eA
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suchthat

(AB to id)R = R~R13,

(2.18) (Id oAA )R = R12 ‘~13’

(idoSA)R=R’,(SB®SA)R=R

HereAA, AB, SA,
5B are the coproductsand antipodesin A, B, respectively.

We definetwisted coproducton the algebraA to B by

(2.19) A(xoy)=R~ A’~
3(x)A~4(y)R~

THEOREM 2.7. Formula (2.20) definesthe structureofa Hopfalgebra on A to B

and

(2.20) S(xtoy) =P(R)’
5A (x) ®SB(y)P(R)

is its antipode. (Here P is the permutationoperator mappingB to A to A to B).
The Hopf algebra describedin Theorem2. 7 will be called the twistedproduct

ofA andB and denotedA B.

Proof The proof of time coassociativityof (2.19) isby direct computation based

on the following propertyof theR-matrix implied by (2.4)

(Atoid)R.R =R
13 R23 R12,

R (id®A)R =R13 RB R12.

Let uscheckthe formula (2.20)for the antipode.We havefirst of all

A(S(xtoy)) = A(P(RY
1

5A (x) toSB(y)p(R))=

A(P(R))R23S~S~S’~S~(A~1(x) A~2(y)) R~A(P(R))=

R23A’~3A~4(P(Ri
1)S~S~S~S~(A~

1(x)A~2(y))

.AA AB ~P’R’~R’
13 24’~ ‘~ 23

On theotherhand,

A’(x toy)=R41A~1(x)A~,(y)R~

(So S)A’ (x toy) = P(R)~ P(R)~ S~S~S~S~(A’(x ~y)).

.P(R)P(R) =

P(R)j~2
1P(R )~4~s:s~4(R~j’)S~S~S~S~(L4 (x) A~

2(yXl~

S~S~(R41)P(R)12 P(R)~.

By comparingtheseexpressionswe find that
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A(S(x toy)) = (S oS) (A’(x toy))

providedthat

R23A~3A~4P(R~ = P(R)j~,’P(R)~‘S~S’j” (R~1
1).

This relation holdsif

(SB
0SA)R =R.

Let us now checkthat

ni(Stoid)A=c.

Put R = a~to R’ = to &, (we shall perform summationoverrepeated
indices). Wehave

m(Stoid)A(xtoy) = in (Stoid)(R23A~3(x)A~4(y)R~) =

m(R~1’Sj~S~(R.,3 A~
1

3(x)A~4(y)Rj~) R2~).

Let

AA(x)=xbox1, AB(y)=ytoy1.

Thenthe l.h.s. of the aboveexpressionis equalto

m(~~
5A (x/)amto j3 SB($Q)SB(yk)SBU3j)13m

a x. ~ ~ =

~

Now, since (id
0SA) R =R’ we have

a a.to ~ ((3)f3 = 101

and also

13 5B(~) 11

since(5B ® id)R~= R whichconcludestheargument.

Now, let A be an arbitrary Hopf algebra,A’the oppositeof A, i.e. it is endo-

wed with the product mn’(x to y) = yx and with the same coproduct.Let A*
be the dual of A. Let R be the canonicalelement in A* to A’ defined in the

following (fairly standard) way. Fix a basis { e.} in A’ and a dual basis { e~} in
A*and put
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(2.21) R = e’o e
1.

LEMMA. R satisfiesrelations(2.18).

Now, put T(A) = A’ A ‘i’, and let ~ (A) = T(A)* be its dual. Clearly,

~(A)~A°® A asalinear space.

THEOREM 2.8. (I) CanonicalembeddingsA°,A -+ ~ (A)are Hopfalgebra hoino-
niorphisms.(ii) ~2’(A) = A°to A as a coalgebra.(iii) LetRD CA

0® A C ~(A)

® 2~(’A)bethecanonicalelement.Then

(2.22) A,(x®y)=R~ AQ (x toy)R~1

In other words, ~ (A) is quasitriangular.

Multiplication in ~(A) is dual to (2.19) with R given by (2.2l)andisgivenby

rather cumbersomeformulae. Let us choosea basic ~e
1}in A and a dual basic

{e’}inA° andlet

e.e.=m(e.toe.)=,n~.e. Ae.=p~e.toe
(2.23) ‘ 1 J ij k z j k

S’ (e1) = (51 )~e

(Here and below we perform summations over repeated indices). By directly

applying the definitions one can show that the following commutationrelations

for themultiplication in ~ (A) arevalid

e et =p1h1(S~)P rnt rn” p~e’
1e

(2.24) S n pa qk j S

e’e. = p571 (5 1 )V jn ~ ni~~ ep et

Algebra ~ (A) is called the double of A. It was constructed by Drinfeld in

[3]; thecoordinate-freedescription we give here is new.

if A is a factorizable Hopf algebra, we may give an alternative description

of its doublewhich parallelsProposition1.5.

THEOREM 2.9. Let (A, R) be a factorizableHopfalgebra. Then its double~ (A)

coincides with its twistedsquare A A. In other words, ~ (A) = A to A is an
algebraand the coproductin ~ (A) isgivenby

(2.25) A (x®y)=R~] A
13(x)A24(y)R23.

Sketchof a proof Embed A, A
0 -* A to A via the mappingsA, (R~® R)A°
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which were used to define the factorizationin A. Onechecksimmediately that

to make theseembeddingsHopf algebrahomomorphisms,one has to twist the

coproductin A to A as in (2.25). Theorem2.7 now assuresthat (2.25) is indeed
a coassociativecoproductin A toA U

Let R~ be the image of the canonicalelemente7 to e’ C A to A°underthe
ambeddingAtoA

0 -+A toAtoA toA. We have

(2.26) R
9 = ~A13 e. to(R4to R)A~ e’=R~1~R~,~R13R23

with R~)= PR’. It is a direct calculationto show that ~ = A A is quasi-
triangularwith the R-matrixR~givenby (2.26).

THEOREM 2.10. The doubleofan arbitrflry HopfalgebraA isfactorizable.

Proof Choosea basis(e, in A and a dual basis{e’ } in A°.Elements.(~= e
1e

1
form a linear basis in ~ (A) A° to A. Let {‘p~} be the dual basisin T(A) =

=

(2.27) (ço~,f1
1>=

TheR-matrixR~ is given by

(2.28) R~=e
1oe’E~o~

andhence

(2.29) I=Rto .P(R~)=e1e
1toe’e

The linearoperatordefinedby (2.29)is given by

I:~ck5_*eke

i.e. its acts simply as a reordering. In view of the commutation relations (2.24)
it is clear that I is invertible. U

Example. Let ~1//q (9) be the quantizeduniversalenvelopingalgebraof a simple
Lie algebra ~ [3] and %q (bk) (~1q( Li_)) its subalgebracorrespondingto the
Borel subalgebraLi + (b_). (It is known [3] that ‘?Iq(b~)O _ ~Iq(b_)and

~V’/Iq(Li+)) Ollq(9) to QI (Li) as an algebra,wherekm C is the tartan
subalgebra.

Note that the canonical coproducton ~ (‘Wq ( Li ~ is again obtainedfrom
the coproduct on the tensor product of Hopf algebras‘~‘ q ~ “11 (Li) by

twisting with the help of the R-matrix R
0 C QI ( Li) ®Qe’(h) which is defined

asfollows.

Let {H1 } be the orthogonalbasisin Li . Then,by definition,
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R0 =~exp~jji1H.).

Since~ (O//~( b~) is factorizable we immediately obtain the following result.

PROPOSITION 2.11. Tile quantized universal envelopingalgebrasof simple Lie

algebrasare factorizable.

3. DRESSINGTRANSFORMATIONS

To motivate the definitions, we start againwith theclassicalcase.Let (~,9*)
be a Lie bialgebra.G, G* the correspondingPoissonLie group (we shall always

have in mind local Poisson groups). Let (~, b *) be the double of (~, g

The correspondingLie group~ is called thedoubleof G; it is againa PoissonLie

group and its tangent Lie bialgebra coincideswith ( b, ~*)~ ~ contains both

G, G* assubgroups,and as a Poissonmanifold (thoughof coursenot asa group)

G x C”. In particular. the quotient space~ /G* (consistingof left coset

classes)may beidentifie.d with G.

PROPOSITION 3.1. (1) The ring of rig/mt G*~invariantfunctionson ~ is a Lie
subalgebra with respectto time Poissonbracketon ~. (ii) Restriction of rig/it

— G* — invariant functions to G C ~ inducesaim isoinorphism of Lie algebras

C~(~)G*~÷C~(G).

This is an example of the Poissonreduction techniquediscussedin [9]. The

group ~ actson C’~(~)by left translations.Clearly, it leavesC~~ G * inva-

riant. Restrictingthis action to the subgroupG* C ~ and combining it with

the aboveisomorphismwe getalinear action

(3.1) G* x C~(G)—* C~(G)

This action inducesan actionof G* on the groupG itself; it is this latter action

that is usuallyreferredto as dressingtransformations.Wehave

(3.2) h.’g-+(hg)~

where the product is in ~ and (hg)~denotesthe solution to the factorization

problemin ~

(3.3) x =x~x
1, x÷C G, x_ C G~

withx = hg.
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THEOREM 3.2. Themapping G* x C -+ C definedaboveis a morphismofPoisson
manifolds.

In otherwords,formula (3.1)definesa Poissongroupaction.
Since the rolesof C and G* are completelysymmetricwe mayalsodefinethe

dualaction

C x G* -> ~

One caneasilyseethat when(9, ~*) is a trivial Lie bialgebra(i.e. ~ * is abelian
and hence G* ~ *) the action C X 9 * ...~ * coincideswith the coadjoint

representationof C. In many ways dressingaction may be regardedasan appro-
priategeneralizationof the coadjointrepresentation.

Let us now turn to the quantum case.Let A be a Hopf algebraand ~(A)
its double describedin Theorem 2.8. Let T be the dual of ~(A), and TA * its

subalgebraconsistingof right A *4nvariant functionals,

(3.4) TA*={fET;(fxa)=E(a)(f,x)}

PROPOSITION 3.3. Restrictionof right — A * — invariantfunctionalstoA C ~1(A)

inducesan isoinorphismofHopfalgebras

Clearly, T4 * is invariant with respect to the action of A* on theleft

(3.5) (a.f,x)=(f,ax)

where the multiplication on the r.h:s. is in ~ (A). In the dual way, we get an
action

(3.6) A*®A ~A :atox~(idtoe)~y~toy1

where

ax=~ y~S’1y’

is thesolution of thefactorizationproblemin ~ (A).

(To understandproperly the analogy between classicaland quantum cases
we mustkeepin mind that neitherA nor A * is an analogof the group G itself;
rather the elementsof A * are analogsof functions on G and those of A are
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analogsof differential operatorson C. In other words, a Quantum group does

not haveany “points”).
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