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Abstract. A relation between quantum R-matrices and certain factorization pro-
blem in Hopf algebras is established. A definition of dressing transformation in
the quantum case is also given.

The term “Quantum groups” has been recently proposed by V. Drinfeid [3]
to cover a specific class of Hopf algebras that are intrinsically connected with
the Quantum Inverse Scattering Method {1, 2]. As a matter of fact, the invention
of Q.I.S.M. has provided a vast source of new examples for the theory of Hopf
algebras. In this respect we should first of all mention of definition of quantized
enveloping algebras of simple Lie algebras given by Drinfeld {4] and Jimbo [5]
following the work of Kulish and Reshetikhin {6 ] that deals with the s/(2) case.
An alternative approach which keeps much closer to the original ideas of Q.I.S.M.
has been developed by Faddeev, Reshetikhin and Takhtajan in [7].

The theory of Quantum groups has as its semi-classical counterpart the theory
of Poisson Lie group, that is Lie groups equipped with Poisson bracket such that
group multiplication is a Poisson mapping. The theory of Poisson Lie groups
is also relatively new [8] and was motivated both by its relation to Quantum
groups and by applications to an important class of classical integrable systems
on l-dimensional lattices described by difference Lax equations [9].
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The commutation relations in quantum groups are expressed by means of
the so-called quantum R-matrices which are of fundamental importance for
the theory. Their semi-classical counterparts are called classical r-matrices and
serve to determine the Poisson bracket relations on Poisson Lie group referred
to above. There exists also a profound connection between classical r-matrices
and certain factorization problems in Lie group. In typical applications these
latter are reduces to matrix Riemann-Hilbert problems that are so crucial to the
study of solutions of Lax equations [9]. Thus classical r-matrices fulfil the double
task of providing both natural Poisson brackets for non-linear Lax equations
and also analytical tools that may be used to obtain their solutions. They also
enter the definition of the so-called dressing transformations that play an im-
portant role in the theory [9].

The aim of the present paper is to establish a similar relation between quantum
R-matrices and certain factorization problems in Hopf algebras. We also give
a definition of dressing transformations in the quantum case. Connections with
quantum integrable systems are presently under study and will be described
in a separate publication.

The present paper was written in part when the second author was working
as a Visiting Fellow at Imperial College in London. He wishes to express his
deep gratitude to the Department of Mathematics at Imperial College for its
hospitality. Particular thanks are due to Miss J. Brown who helped to prepare
the preliminary draft of the manuscript. The authors also would like to thank
J.. Faddeev, L. Takhtajan and A. Kirillov for numerous interesting discussions.

1. FACTORIZABLE LIE BIALGEBRAS

The present section exposes known facts on classical r-matrices in a way
that is suited for generalizations to the quantum case.

Let g be a Lie algebra, g* its dual. A Lie algebra structure [ . J, on g*
defines a map

(1.1) w:g > gAg (X)), fAg)=(X [/ gls).

Lie brackets on g and g* are said to be compatible if  is a 1-cocycle on g .
ie.

Xe(Y)-Yo X)X Y] =0,

the action of 3 on y A g being given by
1.2) X - YANZ=adNX) - YNZ=[1®X+Xe1,Y®Z-Z08Y].

A pair (y. y*) with compatible Lie brackets is called a Lie bialgebra [8).
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We shall be dealing with an apparently very special class of Lie biaigebras. (How-
ever, as we shall see, any Lie bialgebra is embedded canonically into a Lie bial-
gebra that falls into this class).

Fix an element r € 3 ® ¥. We associate with it a trivial 2-cocycle on g with
valuesing ®y '

(1.3) 0, (X) — [ AN =[r, X el + 1@ X]

which gives rise to a would-be commutator map | . 1,: 5 * & g* — g™ defined
by (1). Let us associate with r a linear operator

1.4) rig*-g:f(fei,r.
Its adjoint is given by
(1.5) r¥:fedidef, ry=<{feid, P(r))

where P is the permutation operator in g ® g, P(X ® Y) = Y @ X. The bracket
[ .1 is given by

(1.6) [/ gli=ad*r(f)-g+ad*r*(g)-f

In order to define a Lie algebra structure on g * the bracket (6) must be
skew and satisfy the Jacobi identity. Put

(1.7) I=r+P(r)

The skew symmetry of (6) is equivalent to the condition that

(1.8) [LAX])=[r+P(r).AX]=0
foral X&€g.
Put
(1.9) B’ = ["12' r13] + [r13, r23] + Iry5, r23].

Here as usual 75 is the image of r € 8§ ® g under the mapping § © 3~

- g © g ® g whichsendsu @ bintoa ® b 1 and similarly forr ;. r,,.

PROPOSITION 1.1. If r satisfies (1.8) and moreover Br = 0, expression (1.6)
is a Lie bracket on g * that makes (g. g*) a Lie bialgebra.

Equation
(1.10) by ryg 14 D5 731+ 1ry5.7131=0

is called the classical Yang-Baxter identity.
An obvious way to satisfy (8) is to choose a skew r, i.e. such that
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(1.11) r+ P(r)=0.

Condition (11) is usually called the classical unitarity condition. However,
we shall be interested in the opposite case.

DEFINITION 1.1. The Lie bialgebra described in Proposition 1.1 is called factori-
zable if the linear map 1: g * - 1y defined by the kernel (7) is a linear isomor-
phism. L

Due to condition (8) this map is clarly g -equivariant. Hence the inverse map
I'"! defines a nondegenerate invariant inner product on 8

(1.12) X, V)=, .

We may identify g and g* by means of the pairing (12) and speak of two
different Lie algebra structures on the same linear space. (This point of view
has advantages in the study of integrable systems and is adopted in [9, 10]).

To understand the meaning of the Yang-Baxter identity (10) let us rewrite
it in operator form. A short calculation yields that (10) is equivalent to

(1.13) FPX, rYl—r(X,rY]—[r*X, YD) =0

which means simply that r ;: g * — g is a Lie algebra homomorphism. Observe
now that'r = — P(r) defines the same Lie bracket on g§*, satisfies (10) and
hence gives another Lie algebra homomorphism »_ : g * — . We shall some-
times write r instead of r. Let us consider the mappings

ryer_ X, Y)X-Y
P egepy ————7g.

(1.14) g*

Sincer _ —r_ =1 the composition map coincides with 1. Hence we get

PROPOSITION 1.2. Let (g, g*) be a factorizable Lie bialgebra. Then any ele-
ment X € g admits a unique decomposition

(1.15) X=X, - X_

with (X, X )eim (r, ®r ) C g og.We refer the reader to [10] for a precise
description of this image in terms of the Cayley transform of r.

Note. It is sometimes more convenient to deal with skew r-matrices. If we put

ro=r, —1/21=r +1/21

then
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However, r, now satisfies

1
(1.16) Irg . 7681 —ry U7y . 81+ £, rg8l) == 7 U, Jel.

Equation (16) is called the modified Yang-Baxter equation [9, 10].

Let U(y), U(B*) by the universal enveloping algebras of g , g *, respectively.
We endow them with the usual Hopf algebra structure. The comultiplication
A is given by

(1.17) AX=Xel+leX
and the antipode is
(1.18) SX)=—Xx

on the generators of degree 1.
Let us consider the following chain of mappings

m(id®S)

1.19) U(3*)=U(g*)  U(5*) 222 0(g) © U(g) U(g)

wherem : U(g) @U(g) —= U( g) is the multiplication map.

PROPOSITION 1.3. The composition map Ul g*) - U(yg ) is a linear isomorphism
induced by I: g* - 5. Any element x € U(9) admits a unique representation

(1.20) x=) xisud)
i
where
(1.21) ij;@x"; r,er YA (x)
lies in the range of (r_ @ r_) A. u

The next formula relates multiplications in U(g*) and U(g) and may be
regarded as a generalization of (6). Put

(1.22) xxy=II" ) - 171 ().

The product * is the product in U(g*) pushed forward to U(g) by means
of I.

PROPOSITION 1.4.
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(1.23) x*y:in vSeh).
1

Let us explain now the relation of the representations (20), (15) to the facto-
rization problems in Lie groups. Let G, G* be the local Lie groups corresponding
to g . g *, respectively. We may regard them as consisting of products of exponen-
tials g = e* which lie in an appropriate completion of U( g) (U(g*)) and satisfy
Ag = g ® g Sg = g~ ' Hence (20) implies that there is a unique decomposition
for an element g € ¢

(1.24) g=g, g

with (g, g )E Im(r, xr_) C G x G. Formula (23) yields the following rela-
tion between the multiplications in G, G* Putg o =1 (I (g) - 1" ' (1)) where I
is the local homeomorphism between G* and G induced by (7). Then
(1.25) goh=g hg'l.

So far our discussion remained formal, since we did not give any examples
of factorizable Lie bialgebras. An ample source of such examples is provided
by the following construction [8].

THEOREM . Let (g, §*) be an arbitrary Lie bialgebra.
(i) There exists a unique Lie algebra structure on d= § & g * such thaty ,
8% C 1 are Lie subalgebras and the natural pairing on d

(1.26) (X, f). (Y. 2)) =g(X) + f(Y)

is an 0 -invariant.

(ii) Let P, P* be the canonical projection operators onto g, §* in the de-
composition Y = § & §* We may regard P, P* as elements of D @ d (in fact,
P is the image of the canonical element in § ® §* under the natual embedding
§28*Cded) Pu(rd), =P (rd)_ = — P* The rmatrices (rd), satisfy
(10); moreover,

(rd), —(rd)_=1

is the identity operator. Hence they equip (%, bd*) with the structure of a facto-
rizable Lie bialgebra. Note that

h*zg@g*

as a Lie algebra. =
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We shall refer to ( B, D *) as the double of.(g, §*). The theorem above was
first stated in [8], however, with no special emphasis on the factorization pro-
perties. The notion of the double of a Lie bialgebra was then systematically
used in [9].

It is interesting to notice that if (g, g*) is already a factorizable Lie bialgebra
its double may be described more explicitly.

PROPOSITION 1.5. Let (g, §*) be a factorizable Lie bialgebra. Then d = g og
as a Lie algebra. L]

Indeed, observe that there are natural embeddings
g> XX, X), g*>d:fo(r, fir_f)
Equip  with the inner product
(X X)), (Y, Y0 =X, Y0 —(X,, Y,)

where ( , ) is the natural inner product on g . Then d is the linear sum of these
embedded subalgebras, 8 = g 4 g* and the canonical projections onto g,
g* in this decomposition are adjoints of each other. Note that although of
course D* ~ g © g * as a Lje algebra, in standard coordinates on § @ g the
dual bracket looks twisted. We may briefly, though somewhat informally, say
that the double of a factorizable Lie bialgebra coincides with its twisted square
(cf. Theorem 2.9 below).

Conversely, let d be a Lie algebra equipped with a nondegenerate invariant
inner product and a, b its Lie subalgebras. Assume that a , b are isotropic
and the restriction of the inner product to a x b is nondegenerate, so that
a, b are the duals of each other. Then (a, b ) is a Lie bialgebra and b is its
double. The set (g, a, h) is referred to as the Manin triple.

Example. Let g be a complex simple Lie algebra, h C g its Cartan subalgebra,
b ,Cga Borel subalgebra, containing h, h_ C g the opposite Borel subal-
gebra, M, = [b,, b ] Letw : b, - hi/nt ~ h be the natural projection.
Let ( , ) be the Killing form on g .. It induces a natural inner product on h .

Putd = g & h. We equip d with the inner product
(1.28) (X, H), (Y H)=(X,Y)—(H H").

Let 6 be an orthogonal operator in h .
We define embeddingsr] : b, — D by

1.29) ri:X++—>(X+,7r(X+)),
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(1.29) P X e (X, 0(m(X ).

PROPOSITION 1.6. Assume that (id — 0 ) is invertible. Then the operators r: define
the structure of a Lie bialgebraon (b _. b _} andd= g e h isits double. u

COROLLARY The projectiong © f — g induces the structure of factorizable
Lie bialgebra on (g, g *). Its dual is isomorphic to

g*={(X,. X )Eb_ob_;0(n(X,))=nX_)) .
The associated factorization problem in g is
(1.30) X=X, ~X_with X, €b_,0(mr(X))=nX_).
The most common choice of 8 is, of course, 8 = — id. However, for rank

g > 1 there exists a continuous family of r-matrices on g . (There is also an
additional freedom associated with parabolic subalgebras in g , see [10, 11]).

2. Let us now turn to the study of the quantum case. Recall that “Quantum
groups” are Hopf algebras which may be regarded as deformations of universal
enveloping algebras. We start with the definition of factorizable Hopf algebras
which is suggested by Proposition 1.3. Our next step will be to prove that such
algebras actually exist, which is again achieved by squaring an arbitrary Hopf
algebra.

Let A be a Hopf algebra with productim: A® A > A, coproductA: A ~>A®A,
unit e, counite and antipode S. We shall denote by A’ the opposite coproduct
. obtained from A by permutation

2.n AN(x) = P(A(x)), Plaeb)=b®a

Let A* be the dual Hopf algebra. Recall that by definition the structure of
a Hopf algebra on A* is defined by the formulae

(O¥f, x @ y)=(f, xp),
2.2) {(fg.x)=(feg Ax),

(Sf, x)=(f, Sx).
We denote by A° the opposite Hopf algebra of 4* in which the coproduct
is given by

2.3) A f x ey) =« yx)

The antipode in A° is defined by
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(S'f, xy=A(f, S~L(x)).

The algebra A4 is said tc be quasitriangular [3] if there is an invertible element
R € A ¢ A satisfying
2.4) (Aeid)R=R;; R,
(do®AYR =R, R12
and such that

(2.5) A'@)=RA@R™!
foralla€ 4.

PROPOSITION 2.1. Assume that R satisfies (2.4) and moreover (¢ ® id)R =
=(id ® €) R = e. Then R is invertible and

(2.6) Rl =(Seid)R=(deS )R
Formula (2.6) is connected with the so-called crossing symmetry of quantum

R-matrices and in a slightly disguised form was extensively used in the quantum
inverse scattering method. We have

RS e®id) R = (m;,® id) (id®S®id)Rl3 R23 =
= (my, ®id)(id®Seid)(A®id)R=(eoid)R =e.
The second identity is proved in a similar way, using the second formula
in (2.4).
PROPOSITION 2.2. Let (A, R) be a quasitriangular Hopf algebra. Then R satisfies
the Yang-Baxter identity
2.7 Rj; Ry Ry, =R, Ry Ry,

Proof. Formulae (2.4) imply that

(2.8) (A'®id)R =R,; R;, (d®A)R =R, R ;.
Since (A'® id) = R, e id)R'lé JMideo A = R, (id ® B) R‘2§ the consistency
condition (2.7) must hold. =

Any element B €4 ® A defines a linear map

2.9 B:A*>4: f{feid B)

PROPOSITION 2.3. An element R € A ® A satisfying (2.4), or, equivalently,
(2.8) defines a Hopf algebra homomorphism R : A® - A.
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It is sometimes useful to express the intertwining relations (2.5) in an alter-
native way making the connection with the quantum inverse scattering method
more transparent. Recall that hystorically the definition of quasitriangular Hopf
algebra was an algebraic refinement of the R-matrix commutation relations
between the matrix coefficients of the quantum monodromy matrix. To clarify
the connection with QISM let us introduce the canonical element T € 4 ® A*.

T=Ze,~®€"
i

where { ¢, | is a basis in 4 and {€'} is the dual basis in 4 *. Clearly the definition
of T does not depend on the choice of the basis.

PROPOSITION 2.3'. The canonical element T satisfies the following relations

(2.10) (b @id) T = _Zke].@ek@efe" -7,T,,
7,

W' eid)T=) eee ede/=T,T),
ik
(2.11) R,T\T,=T,T\R,,, S@id)T-T=1.
It is in this form that the intertwining relation (2.5) is commonly used in
Quantum inverse scattering method.
Assume that R € A ®A satisfies (2.4) and (2.7). Put R_=PR ') =
= P(S ® id) R where P is the permutation map.

PROPOSITION 2.4. R _ satisfies relations (2.4) and (2.7). Moreover, R_"! = P(R).
n

As in Section 1 we shall sometimes write R+ instead of R.

Consider now the following sequence of mappings

1

m(d®sS )

A° R R_
(2.12) AV T f0g 40 T8 4o u A.

Clearly, the composition I : A —> 4 is given by
(2.13) f~(feid I), ] =R P(R)=R R1.

We may now finally introduce the definition of factorizable Hopf algebras.
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DEFINITION 2.1. A Hopf algebra A is called factorizable if it is quasitriangular
and, moreover, the linear map (2.13) associated with the corresponding R-matrix
is invertable.

. . 08" o o R+ ®R_
Observe that, for a factorizable A, the mapping A" —=A"9® A ———— 40 A4

defines an embedding of A® into A ® A. Below we shall describe a twisted Hopf
algebra structure on A ® A which makes this embedding a Hopf algebra homomor-
phism. ]

Remark. Sometimes R-matrices satisfying the unitarity condition
(2.14) RPR)=e

are considered (the corresponding Hopf algebras are called triangular). By con-
trast with Definition 2.1 this means that the operator (2.13) is a rank 1 projection
operator.

PROPOSITION 2.5. Let (A, R) be a factorizable Hopf algebra. Then any element
x € A admits a unique representation

2.15) x=) xb S7txi)
i
with Z xi ® xi lying in the range of the mapping (RJr ®R ) N4> 404 =

The following assertion is a close analogue of Proposition 1.4.

PROPOSITION 2.6. Put

(2.16) x+y=JUI"'(x)- I"1(y)), x y€EA.

Then

(2.17) X xy= inyS—1 o). -
i

Thus the formal properties of factorizable Hopf algebras are the same as in
the quasiclassical case considered in Section 1. The main difference is of course
that generically A contains only very few group-like elements, and hence the
sum in (2.15) cannot be eliminated (cf. (1.23), (1.24)).

Let us now turn to the construction of the double of a Hopf algebra. We
start with the notion of twisted product of Hopf algebras.

Let A, B be arbitrary Hopf algebras. Assume that there is an element R €B ® A
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such that

(b, ® id)R =R, R,
(2.18) (id eA )R =R, R,
(ideS,)R=R"' (S,©S5,)R =R

Here A, £, S, S are the coproducts and antipodes in 4, B, respectively.
We define twisted coproduct on the algebra A ® B by

(2.19) Axey)=R,, M, x)AS (y)R)

THEOREM 2.7. Formula (2.20) defines the structure of a Hopf algebra on A ® B
and

(2.20) S(xey)=PR)y' S, (x)®S,(¥)PR)

is its antipode. (Here P is the permutation operator mapping B ® A to A ® B).
The Hopf algebra described in Theorem 2.7 will be called the twisted product
of A and B and denoted A® , B.

Proof. The proof of the coassociativity of (2.19) is by direct computation based
on the following property of the R-matrix implied by (2.4)

(A®id)R-R=R; R,; R ,,
RdeA)R=R,; R,y R,.

Let us check the formula (2.20) for the antipode. We have first of all
AMSGxey)) =APR)Y $4 (x) @ SP(y) PR)) =

54 58 545805, () DE, (») Ry DPR)) =

APR)) R 387

R,y &4, A8, (P(RY 1) S} SE54SE (0% ) 85, (1)
A 0%, (P(R) Ry
On the other hand,
N(x @y) =Ry 4 () 05, (MR,
(SeS)A (x®y) = P(R);) PRY;} S{SZS5SE Wxey))-
PR), PRy =
PR),' P(R);! 8% )S;‘ (R, )S7 SBS7 8% (04, 0) 82, () -
B CA
SESA (R, WP(R), P(R),,.

By comparing these expressions we find that
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ASx ) =(S8S) (A(xey))

provided that
A AB -1 _ - ~1 ¢B ¢A -1
RO 05, PRy = P(R)lzl P(RY;} S38% (R ).

This relation holds if
(S2e SA)R =R

Let us now check that
mSeid)A=c¢.

Put R = o, ® 6, R71 = EI ® &, (we shall perform summation over repeated
indices). We have

m(S @ id) Mx ®y) = m (S ®id) (R,; M, ()05, (») R} ) =
-1 —
mR; 1 S8 SB (R, D) D5, (VIR Ry, ).
Let
My=x'sx, b8(y)=y'e y,
Then the Lh.s. of the above expression is equal to
m@, S, x)a,® B, S(B,)S%(y,)S% (BB,
@, x], o, ® yk) =
= qd . = o B OB B, Kk~ ¢B
@, ST (xT)ya, 0 x @@ B ST(B)ST(Y*) S (B B, V-
Now, since (id ® SY) R = R~! we have
a o eS8 (p)p, =1el
and also
a a,@f SE(B)=1el
since (SB ® id)Rwl = R which concludes the argument. L
Now, let A be an arbitrary Hopf algebra, A’ the opposite of A4, i.e. it is endo-
wed with the product m'(x ® y) = yx and with the same coproduct. Let 4*
be the dual of A. Let R be the canonical element in A* ® A’ defined in the

following (fairly standard) way. Fix a basis {e,} in A’ and a dual basis {€‘} in
A¥ and put
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(2.21) R=) eae.

i
LEMMA . R satisfies relations (2.18). L

Now, put T(A4)=A'®, A* and let D (4)=T(4)* be its dual. Clearly,
D(A) =~ A’® A as a linear space.

THEOREM 2.8. (i) Canonical embeddings A°, A — % (A)are Hopf algebra homo-
morphisms. (ii) D(A) = A® ® A as a coalgebra. (iii) Let Ry, eAdle 4C 2(4)
® D(A) be the canonical element. Then

(2.22) A xey)=R, A, (x @y) RS
In other words, 9 (A) is quasitriangular. =

Multiplication in 2(A} is dual to (2.19) with R given by (2.21) and is given by
rather cumbersome formmulae. Let us choose a basic le;} in A and a dual basic
{e'}in A® and let

e—m(e@e)-m Ae-u/.ke®e
(2.23) 7 ke

1 -
S” (e) = (s™? )i €
(Here and below we perform summations over repeated indices). By directly
applying the definitions one can show that the following commutation relations
for the multiplication in 2 (A) are valid
t__ ,inc—1\p .t ke
.24 eel =plt(S )P m, m‘;k 1 e,

i, _ ,sn — 1y 5,0 pq .1 t
€e; =, ) ) M, B mqtepe

Algebra @ (A) is called the double of A. It was constructed by Drinfeld in
{3]; the coordinate-free description we give here is new.

If A is a factorizable Hopf algebra, we may give an alternative descrlptlon
of its double which parallels Proposition 1.5.

THEOREM 2.9. Let (A, R) be a factorizable Hopf algebra. Then its double 9 (A)
coincides with its twisted square A ®p A. In other words, X (A) = A ® A is an
algebra and the coproduct in 2 (A) is given by

(2.25) A (xey)=Ry' AL, (MR,

Sketch of a proof. Embed A, A — A & A via the mappings A, (R, @ R A"
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which were used to define the factorization in A. One checks immediately that
to make these embeddings Hopf algebra homomorphisms, one has to twist the
coproduct in 4 ® A4 as in (2.25). Theorem 2.7 now assures that (2.25) is indeed
a coassociative coproductin 4 @ A .

Let Ry be the image of the canonical element ¢, ® ¢ € A  A° under the
ambedding Ae A° >4 ®4 A4 A Wehave
= 0 Li_ p(- -
(2.26) R, = ZAB e, ®(R, ® R_) DY, e = R{; )RR 4R,
t
with R©=) = PR™! | It is a direct calculation to show that & = A e, 4 is quasi-
triangular with the R-matrix R g given by (2.26).

THEOREM 2.10. The double of an arbitr‘ary Hopf algebra A is factorizable.

Proof. Choose a basis {ei 4in A and a dual basis {e!}in A°. Elements fij = efei
form a linear basis in 2 (4) ~ A ® 4. Let’{¢;} be the dual basis in T(4) =
= @(A)*

(2:27) Wi fh=87287

The R-matrix R, is given by

(2.28) Ry=e ®e €909
and hence
(2.29) I=Rg PRg )=cg£'o e

The linear operator defined by (2.29) is given by
ey @ [
I: Y, e

i.e. its acts simply as a reordering. In view of the commutation relations (2.24)
it is clear that / is invertible. [ ]

Example. Let % (g) be the quantized universal enveloping algebra of a simple
Lie algebra g [3] and %q (b,) (0Ilq (b_)) its subalgebra corresponding to the
Borel subalgebra b . (b ). (It is known [3] that %q(h+)0 o_-ﬂllq(h_)and
@(”Zlq(h+)) o~ ”Zlq(g) ® 9 (h) as an algebra, where h C hJr is the Cartan
subalgebra.

Note that the canonical coproduct on 2 (% (h +)) is again obtained from
the coproduct on the tensor product of Hopf algebras %q (g) @ % (h) by
twisting with the help of the R-matrix R, € % (h) e%(h) which is defined
as follows.

Let{ Hl. } be the orthogonal basis in h . Then, by definition,
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R, =(exp Z H, HI,).
i

Since 2 (%q( b_ ) is factorizable we immediately obtain the following result.

PROPOSITION 2.11. The quantized universal enveloping algebras of simple Lie
algebras are factorizable. .

3. DRESSING TRANSFORMATIONS

To motivate the definitions, we start again with the classical case. Let (g, g*)
be a Lie bialgebra, G, G* the corresponding Poisson Lie group (we shall always
have in mind local Poisson groups). Let (2, ¥ *) be the double of (g, g *).
The corresponding Lie group % is called the double of G it is again a Poisson Lie
group and its tangent Lie bialgebra coincides with ( 3, d*). & contains both
G, G* as subgroups, and as a Poisson manifold (though of course not asa group)
2 ~ G x G*. In particular, the quotient space 2 /G* (consisting of left coset
classes) may be identified with G.

PROPOSITION 3.1. (i) The ring of right G*-invariant functions on % is a Lie
subalgebra with respect to the Poisson bracket on 9 . (ii) Restriction of right
— G* — invariant functions to G C 2 induces an isomorphism of Lic algebras

C=(D)C" - C~(G). .

This is an example of the Poisson reduction technique discussed in [9]. The
group 2 acts on C™(2) by left translations. Clearly, it leaves C* (2) ¢ inva-
riant. Restricting this action to the subgroup G* C % and combining it with
the above isomorphism we get a linear action

(3.1 G* x C=(G)~> C=(G)

This action induces an action of G* on the group G itself; it is this latter action
that is usually referred to as dressing transformations. We have

(3.2) h:g-—(hg),

where the product is in 2 and (hg)+ denotes the solution to the factorization
problem in 2

L]

(3.3) x=x,x' x €G x_€G*

with x = Ag.
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THEOREM 3.2. The mapping G* x G - G defined above is a morphism of Poisson
manifolds. »

In other words, formula (3.1) defines a Poisson group action.
Since the roles of G and G* are completely symmetric we may also define the
dual action

GxG* > G*

One can easily see that when (g, g *) is a trivial Lie bialgebra (i.e. g * is abelian
and hence G* ~ g *) the action G x g* — g* coincides with the coadjoint
representation of G. In many ways dressing action may be regarded as an appro-
priate generalization of the coadjoint representation.

Let us now turn to the quantum case. Let A be a Hopf algebra and D (A)

its double described in Theorem 2.8. Let T be the dual of 2(4), and " its
subalgebra consisting of right 4 *-invariant functionals,

(3.4) TAY = {fET;(f xa)=e€@) {f, x)}

PROPOSITION 3.3. Restriction of right — A* — invariant functionals to A C 2(4)
induces an isomorphism of Hopf algebras

TA*zA* B

Clearly, 7' © is invariant with respect to the action of 4* on the left
(3.5) @-f,x)=Af, @)

where the multiplication on the r.h:s. is in 2 (A4). In the dual way, we get an
action

(3.6) A*®A—>A:a®x—>(id®e)Zyi+®yi

where
. i o=l i
ax = Z y+ S Y —
i
is the solution of the factorization problem in 2 (4).
(To understand properly the analogy between classical and quantum cases

we must keep in mind that neither A nor A* is an analog of the group G itself;
rather the elements of A* are analogs of functions on G and those of A are
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analogs of differential operators on G. In other words, a Quantum group does
not have any “points”).
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